Principal Homogeneous Spaces for Finite Group Schemes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geometry of Principal Homogeneous Spaces

Let k be an algebraically closed field, let π : X → B be an elliptic surface defined over k, and let XK be the generic fiber of π, which is an elliptic curve defined over the field K = k(B), the function field of B. If f : Y → B is a genus one fibration locally isomorphic to X (in the étale topology on B), then Y corresponds to a principal homogeneous space YK over XK which is everywhere locall...

متن کامل

On the Geometry of Principal Homogeneous Spaces

Let B be a curve defined over an algebraically closed field k and let π: X → B be an elliptic surface with base curve B. We investigate the geometry of everywhere locally trivial principal homogeneous spaces for X, i.e., elements of the Tate-Shafarevich group of the generic fiber of π. If Y is such a principal homogeneous space of order n, we find strong restrictions on the Pn−1 bundle over B i...

متن کامل

To Finite Group Schemes

1. Tate’s theorem 2 Exercises 5 2. Introduction to group schemes 5 Definition (as a functor) 6 Definition (as a group object) 6 Examples of group schemes 8 Rank and the augmentation ideal 9 Subgroup schemes, morphisms and kernels 11 Diagonalizable group schemes 13 Constant group schemes 14 Exercises 14 3. Duality and Deligne’s theorem 16 Cartier duality 16 Deligne’s theorem 19 Exercises 22 4. É...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

A classification of finite homogeneous semilinear spaces

A semilinear space S is homogeneous if, whenever the semilinear structures induced on two finite subsets S1 and S2 of S are isomorphic, there is at least one automorphism of S mapping S1 onto S2. We give a complete classification of all finite homogeneous semilinear spaces. Our theorem extends a result of Ronse on graphs and a result of Devillers and Doyen

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1969

ISSN: 0002-9939

DOI: 10.2307/2037457